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QUANTUM HYDRODYNAMIC EQUATIONS FOR MULTI-COMPONENT SYSTEMS
V. A. Krasnikov

Equations of hydrodynamics are obtained on the basis
of quantum statistics for multi-component systems in an
ideal 1liquid approximation.

The present article applies the generalization of results obtained in /63%
(Ref. 1) to the quantum case. We also confine ourselves to obtaining equations
of hydrodynamics in the ideal liquid approximation. This problem' was studied
in (Ref. 2, 3, and 4) for one-component systems.

We shall investigate a system (which interacts by means of central forces)
of Fermi- and Bose particles, whose Hamiltonian has the following form in the
representation of secondary quantization
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where the indices i, j =1, 2, ..., M pertain to different types of particles,
and the operators wi(t, r) and w;(t, r') satisfy the commutation conditions

in the Heisenberg representation
Wil Py (G r) £ () = A= S (),
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The upper sign corresponds to Fermi particles of one type, and the
lower sign corresponds to Bose particles and to different (i # j) fermions.
Summation with respect to spins is trivial and is omitted everywhere.

In order to obtain the equations of hydrodynamics, we require the
expressions for the derivatives with respect to time of the mean density

'ni(t, r), the mean flux e(t, r) of the particles and of the mean energy

per particle e(t, r). These quantities may be determined in the customary

way:
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where the means are taken with a certain unbalanced statistical operator,

generally speaking. Summation with respect to spins is trivial and is omitted
everywhere.

By employing (1) and (2) we may readily obtain the equations of motion
for operator wave functions:
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Let us now calculate the derivatives with respect to time from (3), (4),

and (5). Employing (6) and (7) and performing the transformations in the same
way as in (Ref. 4), we obtain
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Before obtaining the equations of hydrodynamics, let us examine the
state of statistical equilibrium in the case of Ui = 0, which is characterized

by the customary parameters -- density pf the number of particles of all
components ni(t, r), temperature 6(t, r), velocity of the system as a whole
>
v(t, ). For the state of statistical equilibrium, means of the type
< vee > 4 Moy coes coes 8, V may be expressed by transformation of the

im4Vr -
operator functions wi > e 1 wi using the mean values < ... > ...n;, ..., 6
: >
in the case of V = 0. We obtain
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is the mean energy per one particle for the state of statistical equilibrium
of a liquid at rest. It is apparent that in this case all the diffusion fluxes
;equal - : |
12§ —nmV® =0,
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Let us examine a quantity of the type
A== (D (8, 1) (Do (8, r" DDy (8, N (Dapy (£, ),
‘where Dv represent linear combinations of constants and differen-

tiation operators with respect to spatial variables.

Due to the spatial uniformity of the state of statistical equilibrium,
we have
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In hydrodynamics, the quantities

A (8, 1y R) = <Dy} (8, 1) (Do) (2, 7)) (Db (2, 7)) (Dahi (1, 7)) (13)
and the outer field Ui(t’ r) change very little in the case of spatial and

time translations. We shall assume that quantities of the type (13) differ




to a sufficiently small extent from the corresponding equilibrium values
Aik(R‘ ...ni(t, ), ..y 8(t, YY), ..., Ui(t’ r), ..., V(t, ¥). The smaller

these values, the smaller the gradients of the quantities ni(t, r), 6(t, r),

Ui(t, r) and G(t, r), where V and 8 may%be expressed by
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For the formal expression of the assumptions which have been advanced,
it is advantageous to introduce the small parameter u. Then the means of the

type under consideration and the outer field assume the following form 66
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In view of the assumption which has been advanced regarding the small
deviation from statistical equilibrium, we have
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gradients n, (1, £) ¢(t, €), V(t, £), and U, (t, €).

Changing from the variables t, T to the variables T, E in (8), (9) and

(10), we obtain
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Let us investigate the following quantitity which is contained in (20)
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Taking the fact into account that the rapidly decreasing quantity is

a
oR
contained in the integrand, and performing expansion of G (T & - uR, R) with

respect to pR, in accordance with (16), we obtain
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We have chagged the summatlo;e indices and have employed the symmetry of the
expression GO‘k(T £, -— R) + Go‘k(T £, R).
i i

We also obtain exactly
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Then, disregarding terms of the order p and higher in (19) and (20), we obtain
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All the means are taken with respect to the state of statlstlcal
equilibrium which is determined by the parameters n, (1,8), e(T £) and V(1,£).

Let us substitute the operator wave functions w. > e EE;Y£.¢1. In a state of

statistical equilibrium of a liquid at rest, all of the _means must be in-
variant with respect to the transformation * + - ¥ and k> - X% (k - wave
vector).

In our approximation, we obtain the following for the quantities T _ and
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The following relationships may also be employed when deriving (26)




~ ~~; .Ff! A~ ~ -~
Ch(RI om0, V) = L Dy R, B)

and {
Nl R LA A DA RN +
neg(.. ..., 8) oy hd N\ P b/ ~ g
i i) ni )
+ %E S’(D,,,E,k(m iy ) dR.
S e L
Equations (21) and (22) then assume the foim
a7e —y d(p VTP (..., 0 N U, ~
ot 2—“2-1 ah " A ‘ (28)
| p . ! |
ney 9 (ol ~~ ~ ~ %] ~
—?%1;’)—=-~2~£3—{V"[(ns0(.../1,... ,0) -+ —’1-2-—— +P(..n... ,9)“« ’ (29)

YLy |
: b 111 Foeh '
: i A

In order to have a comprehensive hydrodynamic description of a multi-
component system, we must add the expression for diffusion fluxes to the
equations obtained. However, it may be readily seen that there is no diffusion

in the approximation which is assumed here -- as must be the case. 1In
actuality, we have
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since (0)}?(...31... s 8, %) may be determined according to the state of local
i
equilibrium and in accordance with (14) (0)}? = Ei$“, " n
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Let us introduce entropy for one molecule s = - = , Where /69
a6
F("'gi’ e %) is free energy. In exactly the same way as in (Ref. 1),
equation (29) may be transformed to the following form
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Returning to the variables t, ¥ in equations (18), (28), (30), we obtain
the well known system of hydrodynamic equations for an ideal liquid.

Consideration of terms of the order u in (23) and (24) leads to equations
of hydrodynamics with allowance for viscosity, thermal conductivity, and
diffusion. This case will be investigated in a subsequent article.
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